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Abstract
In physics and mathematics, the generalized Lorentz group is the

group of all Lorentz transformations of generalized Minkowski space-
time Rn+1. The Lorentz group is named for the Dutch physicist
Hendrik Lorentz. The mathematical form of the kinematical laws
of special relativity, Maxwell�s �eld equations in the theory of electro-
magnetism, the Dirac equation in the theory of the electron, are each
invariant under the Lorentz transformations. Therefore the Lorentz
group is said to express the fundamental symmetry of many of the
known fundamental Laws of Nature. Our purpose is to study the
components of the general linear group GL(n;R) and the four com-
ponents of the generalized Lorentz group O(n; 1). The identity com-
ponent of GL(n;R), denoted by GL+(n;R) is group and the identity
component of O(n; 1), denoted by SO+(n; 1) is group. We prove the
negative components of the groups GL(n;R) is group isomorphic onto
GL+(n;R); and the remaining three components of the group O(n; 1)
are also groups each one of them isomorphic onto SO+(n; 1)
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1 Introduction.

In physics, the Lorentz transformation is named after the Dutch physicist
Hendrik Lorentz. It was the result of attempts by Lorentz and others to
explain how the speed of light was observed to be independent of the ref-
erence frame, and to understand the symmetries of the laws of electromag-
netism. The Lorentz transformation is in accordance with special relativity,
but was derived well before special relativity. The transformations describe
how measurements of space and time by two observers are related. They
re�ect the fact that observers moving at di¤erent velocities may measure dif-
ferent distances, elapsed times, and even di¤erent orderings of events. They
supersede the Galilean transformation of Newtonian physics, which assumes
an absolute space and time. The Galilean transformation is a good ap-
proximation only at relative speeds much smaller than the speed of light.
The Lorentz transformation is a linear transformation. It may include a ro-
tation of space; a rotation-free Lorentz transformation is called a Lorentz
boost. In the Minkowski space, the Lorentz transformations preserve the
spacetime interval between any two events. They describe only the trans-
formations in which the spacetime event at the origin is left �xed, so they
can be considered as a hyperbolic rotation of Minkowski space. The more
general set of transformations that also includes translations is known as the
Poincaré group. The Lorentz group is a subgroup of the Poincaré group,
the group of all isometries of Minkowski spacetime. The Lorentz transfor-
mations are precisely the isometries which leave the origin �xed. Thus, the
Lorentz group is an isotropy subgroup of the isometry group of Minkowski
spacetime. For this reason, the Lorentz group is sometimes called the homo-
geneous Lorentz group while the Poincaré group is sometimes called the in-
homogeneous Lorentz group. Lorentz transformations are examples of linear
transformations; general isometries of Minkowski spacetime are a¢ ne trans-
formations. Mathematically, the Lorentz group may be described as the non
connected generalized orthogonal group O(n; 1), the matrix Lie group which
preserves the quadratic form

(t; x1; x2; ::::; xn)! t2 �
nX
i=1

x2i (1)

on Rn+1. This quadratic form is interpreted in physics as the metric tensor of
generalized Minkowski spacetime, so this de�nition is simply a restatement of
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the fact that Lorentz transformations are precisely the linear transformations
which are also isometries of Minkowski spacetime Rn+1. The Lorentz group
is a n(n+1)

2
-dimensional noncompact non-abelian real Lie group which is not

connected. All four of its connected components are not simply connected.
The identity component (i.e. the component containing the identity element)
of the Lorentz group is itself a group and is often called the restricted Lorentz
group and is denoted SO+(n; 1). In this paper we will prove that the remain-
ing three components of the group O(n; 1) have structure of group each one
of them isomorphic onto the group SO+(n; 1): To prove this, we begin by the
general linear group GL(n;R), which is not connected but rather has two
connected components: the matrices with positive determinant and the ones
GL�(n;R) with negative determinant. The identity component, denoted by
GL+(n;R), consists of the real n � n matrices with positive determinant is
group, and GL�(n;R) has structure of group isomorphic onto GL+(n;R):

2 New groups

Let R�be the multiplicative group and let R�+ = fx 2 R�; x � 0g be the
multiplicative group consists of all positive real numbers. Let R�� = fx 2 R�;
x � 0g be the set consists of negative numbers
De�nition 2.1. On the set R��we de�ne a new multiplication as

x � y = (�1)x:y 2 R�� (2)

for any xl 0 and y l 0
Theorem 2.1. (R��; �) with this law is group isomorphic onto the group

R�+:
Proof: (i) the identity element is �1 because x � (�1) = (�1) � x = x.
(ii) The inverse element of x is (� 1

x
) due x � (� 1

x
) = (�1)x:(� 1

x
) = x:

(iii) x � y = (�1)x:y = (�1)y:x = y � x that means � is commutative
(iv) The associativity results immediately because (x � y) � z = (�1)(x �

y):z = (�1)((�1)(x:y)):z = x:y:z = x � (y � z)
(v) The mapping � : R�� ! R�+ de�ned by

�(x) = (�1)x (3)
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This implies

�(x � y) = (�1)(x � y) = (�1)(�1)x:y = x:y = �(x):�(y) (4)

So � is group homomorphism. It is clear � is one-to-one and onto.
2.2. Let (R�)n = R� � R� � ::: � R� be the multiplicative group of

dimension n; which is the direct product n�times of the multiplicative group
R� of dimension 1: Let (R�+)n = f(x1; x2; :::; xn) 2 (R�)nj xi � 0;8 1 �
i � n g be the multiplicative group of positive component and let (R��)n =
f(x1; x2; :::; xn) 2 (R�)nj xi � 0;8 1 � i � n g be the negative component.
As in de�nition 2.1 we furnish this component by new law noted again � as
follows

x � y = [(x1; x2; :::; xn) � (y1; y2; :::; yn)] = [(�1)x1:y1; (�1)x2:y2; :::; (�1)xn:yn]
(5)

It is easy to show ((R��)n; �) = (R�� � R�� � ::: � R��, �) is group and is
the direct product n�times of the multiplicative group R��: Since (R��; �) is
group isomorphic onto the group R�+; then ((R��)n; �) = ((R�+)n; :) and so the
non connected Lie group is two copies of the group ((R�+)n; :)
The general linear GL(n;R) is not connected but rather has two con-

nected components: the matrices with positive determinant is group contains
the identity element and denoted by GL+(n;R) and the ones with negative
determinant denoted by GL�(n;R). The orthogonal group O(n) is maximal
compact non connected subgroup of GL(n;R), while the maximal compact
subgroup of GL+(n;R) is the special orthogonal group SO(n). We denote
the component of the negative determinant by GL�(n;R) and we denote by
O�(n) the subset of O(n)with negative determinant. Let I� 2 GL�(n;R) be
the matrix de�ned as

I� = (aij) (6)

where a11 = �1, aii = 1 for any 2 � i � n; and otherwise aij = 0:
De�nition 2.2. On the subset GL�(n;R), we put the multiplicative law

|;which is de�ned by
A |B = A:I�:B (7)

for any A and B belong to GL�(n;R)
Theorem 2.2. (GL�(n;R),|)becomes group isomorphic onto the group

(GL+(n;R),:)
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Proof: As in theorem 2.1, we can easily �nd that the identity element is
I�, because

I� | A = I� = A | I� = I�:I�A = A:I�:I� = A (8)

Since

A |B = B | A = A:I�:B = B:I�:A = I� (9)

then the inverse element of an element A 2 GL�(n;R) is I�A�1I�. The
associativity holds because we have,

(A | B) | C = A | (B | C)
= (A |B):I�:C = (A:I�:B):I�:C
= A:I�:(B:I�:C) = A | (B | C) (10)

for anyA; B; andC;belongGL�(n;R). Now de�ne mapping  :GL�(n;R)!GL+(n;R)
by

 (A) = AI� (11)

then we get

 (A |B) = (A |B):I� = A:I�:B:I� =  (A): (B) (12)

That means  is group homomorphism and clearly is bijective. So our

theorem is proved.
Corollary 2.1. The set O�(n) with the law | becomes group isomorphic

onto SO(n)
The proof of this corollary results immediately from theorem 2.2.

3 The Generalized Lorentz Group O(n; 1)

3.1. The pseudo orthogonal groups O(p; q) are of considerable interest in

theoretical physics. It can be identi�ed with the Lie group of all real n � n
-matrices A which satisfy

AtIp;qA = Ip;q (13)
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where

Ip;q =

�
Ip 0
0 � Iq

�
(14)

The most important are the Lorentz group O(n; 1) and the inhomoge-
neous de Sitter group O(4; 1): As in [16; 105 � 109]; we consider the four
connected components of the group O(n; 1); which are corresponding to the
cases
(1) All matrices X of the form

L1 = fX 2 O(n;R); detXh0; +1 as the lower right entry of the orthogonal matrix}
(15)

(2) All matrices X of the form

L2 = fX 2 SO(n;R); �1 as the lower right entry of the orthogonal matrix}
(16)

(3) All matrices X of the form

L3 = fX 2 O(n;R); detXh0; �1 as the lower right entry of the orthogonal matrix}
(17)

(4) all matrices X of the form

L4 = fX 2 SO(n;R); +1 as the lower right entry of the orthogonal matrix
(18)

Thus (3) and (4) correspond to the group SO(n; 1). Observe that detX
= �1 in the cases (1) and (2) and that detX = 1 in the cases (3) and (4):
The components in (1) and (2) are not groups and the case (4) corresponds to
a group, which is the connected component of the identity and it is denoted
SO0(n; 1). The following theorem proves us that the components (1),(2) and
(3) of the group O(n; 1) are naturally equipped by structures of groups.
Theorem 3.1. The cases (1); (2) and (3) can be supplied by structure

of groups, and each of them is isomorphic onto the group SO0(n; 1).
Proof : For the case (1); de�ne the multiplication of two matrix X and

Y belong to LD1 by

X � Y = X:I�n+1:Y (19)

where
I�n+1 = (�ij) (20)
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and �11 = �1; �ii = 1;for 2 � i � n + 1; otherwise �ij = 0: Consider the
equation

X � Y = X:I�n+1:Y = Y (21)

then the identity matrix is I�n+1; because

I� �X = X � I� = I�:I�:X = X:I�:I� = X (22)

Since
X � Y = X:I�n+1:Y = I�n+1 (23)

then the inverse X�1 of X is

I�:X�1:I� (24)

because

X �X�1 = X:I�n+1:I
�:X�1:I� = I�n+1 = X�1 �X (25)

The law � is associative, because

A � (B � C) = A:I�:(B:I�:C) = (A:I�:B):I�:C = (A �B) � C (26)

and so (LD1; �) becomes group. Now de�ne the mapping 	 : LD1 ! LD4

by
	(X) = X:I�n+1 (27)

We have

	(X � Y ) = (X � Y ):I�n+1 = (X:I�n+1:Y ):I�n+1 = 	(X):	(Y ) (28)

It is clear that the mapping 	 is bijective and so is group isomorphism
from LD1 onto LD4:
For the case (2); it su¢ ces to de�ne the multiplication in LD2 by

X / Y = X:I�;n+1:Y (29)

where
I�;n+1 = (�ij) (30)

and �n+1n+1 = �1; �ii = 1; for 1 � i � n; otherwise �ij = 0: Obviously LD2

with / turn into group and the mapping ' : LD2 ! LD4 which is de�ned by

'(X) = X:I�;n+1 (31)
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is group isomorphic from LD2 onto LD4

For the case (3); de�ne the multiplication law of LD3 by

X . Y = X:I��;n+1:Y (32)

where
I��;n+1 = (�ij) (33)

and �11 = �1 ; �n+1n+1 = �1; �ii = 1; for 2 � i � n; otherwise �ij = 0:
Clearly . turn out LD3 to group and the mapping ' : LD3 ! LD4 which is
de�ned by

�(X) = X:I��;n+1 (34)

is group isomorphic from LD3 onto LD4: So the theorem is proved
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